From Passive to Active Dynamic 3D Bipedal Walking – An Evolutionary Approach
نویسندگان
چکیده
Applying an evolutionary algorithm, we first develop the morphology of a simulated passive dynamic bipedal walking device, able to walk down a shallow slope. Using the resulting morphology and adding minimal motor and sensory equipment, a neural controller is evolved, enabling the walking device to walk on a flat surface with minimal energy consumption. The applied evolutionary algorithm fixes neither the size nor the structure of the artificial neural network. Especially, it is able to generate recurrent networks, small enough to be analyzed with respect to their behavior relevant inner dynamics. An example of such a controller is given which realizes also minimal energy consumption.
منابع مشابه
From Passive to Active Dynamic 3D Bipedal Walking
Applying an evolutionary algorithm, we first develop the morphology of a simulated passive dynamic bipedal walking device, able to walk down a shallow slope. Using the resulting morphology and adding minimal motor and sensory equipment, a neural controller is evolved, enabling the walking device to walk on a flat surface with minimal energy consumption. The applied evolutionary algorithm fixes ...
متن کاملFrom Passive Dynamic Walking to Passive Turning of Biped walker
Dynamically stable biped robots mimicking human locomotion have received significant attention over the last few decades. Formerly, the existence of stable periodic gaits for straight walking of passive biped walkers was well known and investigated as the notion of passive dynamic walking. This study is aimed to elaborate this notion in the case of three dimensional (3D) walking and extend it f...
متن کاملEnergy Dissipation Rate Control Via a Semi-Analytical Pattern Generation Approach for Planar Three-Legged Galloping Robot based on the Property of Passive Dynamic Walking
In this paper an Energy Dissipation Rate Control (EDRC) method is introduced, which could provide stable walking or running gaits for legged robots. This method is realized by developing a semi-analytical pattern generation approach for a robot during each Single Support Phase (SSP). As yet, several control methods based on passive dynamic walking have been proposed by researchers to provide an...
متن کاملLinear reactive control for efficient 2D and 3D bipedal walking over rough terrain
The kinematics of human walking are largely driven by passive dynamics, but adaptation to varying terrain conditions and responses to perturbations require some form of active control. The basis for this control is often thought to take the form of entrainment between a neural oscillator (i.e., a central pattern generator and/or distributed counterparts) and the mechanical system. Here we use t...
متن کامل3D Quasi-passive Walking of Biped Robot with Flat Feet - Gait Comparison between Passive Walking and Quasi-passive Walking -
Currently, many bipedal robots have been proposed to realize the high energy efficiency walking. The control input isn’t required for the passive dynamic walking. Generally, a foot of passive dynamic walking robot is an arc foot. In this paper, it is intended to establish a control method and control mechanism to achieve the energy efficient and the stable gait. Therefore, we developed 3D quasi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005